US-SOMO-AF: a database of hydrodynamic, circular dichroism, and SAXS-derived parameters for the AlphaFold-predicted protein structures

Emre Brookes

Department of Chemistry and Biochemistry, The University of Montana, Missoula, MT, USA

Mattia Rocco

Retired, Proteomics & Mass Spectrometry, IRCCS Ospedale Policlinico San Martino, National Institute for Research on Cancer, Genova, Italy

The AlphaFold "revolution"

Article

Highly accurate protein structure prediction with AlphaFold

https://doi.org/10.1038/s41586-021-03819-2	John Jumper ^{1,4} , Richard Evans ^{1,4} , Alexander Pritzel ^{1,4} , Tim Green ^{1,4} , Michael Figurnov ^{1,4} ,				
Received: 11 May 2021	Olaf Ronneberger ^{1,4} , Kathryn Tunyasuvunakool ^{1,4} , Russ Bates ^{1,4} , Augustin Židek ^{1,4} , Anna Potapenko ^{1,4} , Alex Bridgland ^{1,4} , Clemens Meyer ^{1,4} , Simon A. A. Kohl ^{1,4} , Andrew J. Ballard ^{1,4} , Andrew Cowie ^{1,4} , Bernardino Romera-Paredes ^{1,4} , Stanislav Nikolov ^{1,4} , Rishub Jain ^{1,4} , Jonas Adler ¹ , Trevor Back ¹ , Stig Petersen ¹ , David Reiman ¹ , Ellen Clancy ¹ , Michal Zielinski ¹ , Martin Steinegger ^{2,3} , Michalina Pacholska ¹ , Tamas Berghammer ¹ ,				
Accepted: 12 July 2021					
Published online: 15 July 2021					
Open access	Sebastian Bodenstein ¹ , David Silver ¹ , Oriol Vinyals ¹ , Andrew W. Senior ¹ , Koray Kavukcuoglu ¹ , Pushmeet Kohli ¹ & Demis Hassabis ^{1,4}				

Nature | Vol 596 | 26 August 2021 | 583

Article

Highly accurate protein structure prediction for the human proteome

https://doi.org/10.1038/s41586-021-03828-1

Received: 11 May 2021

Accepted: 16 July 2021

Published online: 22 July 2021

Open access

Kathryn Tunyasuvunakool¹²², Jonas Adler¹, Zachary Wu¹, Tim Green¹, Michal Zielinski¹, Augustin Židek¹, Alex Bridgland¹, Andrew Cowie¹, Clemens Meyer¹, Agata Laydon¹, Sameer Velankar², Gerard J. Kleywegt², Alex Bateman², Richard Evans¹, Alexander Pritzel¹, Michael Figurnov¹, Olaf Ronneberger¹, Russ Bates¹, Simon A. A. Kohl¹, Anna Potapenko¹, Andrew J. Ballard¹, Bernardino Romera-Paredes¹, Stanislav Nikolov¹, Rishub Jain¹, Ellen Clancy¹, David Reiman¹, Stig Petersen¹, Andrew W. Senior¹, Koray Kavukcuoglu¹, Ewan Birney², Pushmeet Kohli¹, John Jumper^{1,322} & Demis Hassabis^{1,322}

Nature | Vol 596 | 26 August 2021 | 590

The AF consortium database currently includes 992,316 predicted structures covering 48 organism proteomes and the majority of Swiss-Prot

Home

About

FAOs

Downloads

AlphaFold Protein Structure Database

Developed by DeepMind and EMBL-EBI

AF method and issues

- AF is based on an AI algorithm trained on the protein structures present in the PDB
- No thermodynamic/mechanistic approach, relies only on a deep learning process
- Potentially biased toward structures already present in the PDB
- Potentially unstructured regions are approximated with an "unique" conformation

Performing some rapid solution test on a predicted structure should be considered

- Verifying the secondary structure content by Circular Dichroism (CD) spectroscopy
- Assessing the overall shape compatibility by measuring hydrodynamic parameters, such as $D^0_{t(20,w)}$, $s^0_{(20,w)}$, $[\eta]$
- Using small-angle x-ray scattering (SAXS) methods to produce the pairwise distance distribution function p(r) vs. r
- All these parameters/functions can be directly calculated from structures

To facilitate the comparison between measured and calculated parameters, we have computed them for the entire AF database, and placed them in the public-domain US-SOMO-AF database: <u>https://somo.genapp.rocks/somoaf</u>

US-SOMO Database

Login Help on

US-SOMO-AF

US-SOMO Hydrodynamic, Structural and SESCA CD Calculations on AlphaFold Predicted Structures

Warning: the computed data are meaningful for monomeric single chain proteins, and potential prosthetic groups are not present in the AF-generated structures. The flexibility of extensive unstructured regions was not included in the computations

UniProt accession	P01029-F1-pp1_2				
	Search				
AlphaFold model name	AF-P01029-F1-model_v1				
Title	ALPHAFOLD V2.0 PREDICTION FOR COMPLEMENT C4-B (P01029)				
Source	MOL_ID: 1 ORGANISM_SCIENTIFIC: MUS MUSCULUS ORGANISM_TAXID: 10090				
Post translational processing	signal peptide seq. 1-19, propeptide seq. 674-677, propeptide seq. 1444-1447 removed				
UniProt residues present	A:20-673; B:678-1443; C:1448-1738				

To facilitate the comparison between measured and calculated parameters, we have computed them for the entire AF database, and placed them in the public-domain US-SOMO-AF database: <u>https://somo.genapp.rocks/somoaf</u> <u>https://www.nature.com/articles/s41598-022-10607-z</u>

scientific reports

Explore content Y About the journal Y Publish with us Y

nature > scientific reports > articles > article

Article Open Access Published: 05 May 2022

A database of calculated solution parameters for the AlphaFold predicted protein structures

Emre Brookes 🗠 & Mattia Rocco

Scientific Reports 12, Article number: 7349 (2022) Cite this article

1772 Accesses 1 Altmetric Metrics

Methods

- The AlphaFold structures were predicted directly from the UniProt sequences, without any curing regarding post-translational modifications
- Based on the UniProt annotations, we have removed the Initiator Methionine, Signal Peptide, and Transit Peptide(s) from the AF structures. Permuted structures with/without Propeptide(s) were also generated (subtotal: ~110,000)
- CD spectra were computed using the SESCA program <u>https:// doi. org/10.1021/acs.jctc.9b00203</u>
- US-SOMO was used to compute the hydrodynamics (SoMo with overlaps + ZENO method) and the p(r) vs. r using SAXS-related parameters

Methods

• Processing pipeline:

Processing performed on resources:

• University of Lethbridge & the Texas Advanced Computer Center

• Website:

- Generated using the GenApp framework <u>https://genapp.rocks</u>
- Hosted on NSF Jetstream2 <u>https://somo.genapp.rocks</u>
- Allocated via NSF XSEDE

Some examples:

Organism	Mean AF % conf.	Signal peptide	Molecular mass [Da]	R_g [nm]	R_s [nm]	[η] [cm ³ /g]	Helix%	Sheet%
H. sapiens	75.64	1-28	98,141	8.42	6.56	23.3	9.2	25.5
			P(r)			Circular Di	ichroism Spectru	m
	800		· · · · · · · · · · · · · · · · · · ·		[0] (10 ³ deg*cm ² /dmol)			

Organism	Mean AF % conf.	Signal peptide	Molecular mass [Da]	R_g [nm]	R_s [nm]	$[\eta]$ [cm ³ /g]	Helix%	Sheet%
R. norvegicus	82.81	1-20	94,123	5.55	4.76	8.93	42.8	11.2

D3ZV97:

Q9Y5H4:

Distance [Å]

P(r)

Wavelength [nm]

Analyzing the calculated hydrodynamic parameters for a subset of ~41,200 AF structures

Given an average experimental error of ±3%, what % of structures within 2x or 3x the average error can we distinguish within 5 kDa bins?

Comparison between p(r) vs. r derived from SAXS, and computed from AF (and PDB) structures

Effect of conformational variability on the hydrodynamic parameters and p(r) vs. r: a DMD simulation

088338 Frame 001

Effect of conformational variability on the hydrodynamic parameters and p(r) vs. r: a DMD simulation, summary

Effect of long unstructured regions on the hydrodynamic parameters. A Monomer Monte Carlo simulation on the 1-118 N-terminal residues of structure AF-A0A060D4L2

https://sassie-web.chem.utk.edu Curtis, et al. 2012 doi: 10.1016/j.cpc.2011.09.010

Results of the MMC simulation on structure AF-A0A060D4L2, >16,000 conformations

Database enables global studies

Processing pipeline enables additional calculations

Drawbacks & perspectives

- The current AF database release (v2) contains predictions for single chain structures only
- AF has released a program that can predict multiple-chains structures. If and when this will be generalized to produce an updated database, we can recalculate the parameters/functions for the new structures

Drawbacks & perspectives

- No prosthetic groups, such as carbohydrates, were taken into consideration by AF
- For carbohydrates, methods to predict their structure from composition are available and under continuous development in several laboratories. The biggest hurdle is to accurately predict the composition of carbohydrates and correctly store this information at the UniProt level. US-SOMO already handles carbohydrates, so updating the database will be possible
- The situation is obviously more complicated for the hundreds of other potential prosthetic groups

Drawbacks & perspectives

- Unstructured parts are represented as a single defined conformation in the AF predictions
- Correctly taking into account segmental or generalized flexibility is a much bigger issue. Molecular Dynamics - requiring huge computer power, Monte Carlo simulations or Brownian Dynamics, appear to be the best possibilities
- However, the data in the US-SOMO-AF database could raise "red flags", and indicate that additional modeling work is required to further validate a predicted structure

Acknowledgments

- NIH/NIGMS R01GM120600 (Brookes, Demeler, Savelyev)
- NSF CHE-1265817, OAC-1740097, OAC-1912444 (Brookes).
- This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF Grant Number ACI-1548562 and utilized Jetstream at Indiana University through allocation TG-MCB170057 to Brookes.
- The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported (<u>http://www.tacc.utexas.edu</u>).
- The computing infrastructure at the University of Lethbridge was funded by the Canada Foundation for Innovation (CFI-37589 to Demeler).
- We are grateful to P. Vachette (I2BC, Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France) for comments and suggestions.

Thank you for your attention

Emre Brookes

Department of Chemistry and Biochemistry, The University of Montana, Missoula, MT, USA <u>emre.brookes@umontana.edu</u>

Mattia Rocco

Retired, Proteomics & Mass Spectrometry, IRCCS Ospedale Policlinico San Martino, National Institute for Research on Cancer, Genova, Italy <u>mattia.rocco@quipo.it</u>